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The purpose of this thesis is to study two generalizations
of the following problem in the theory of partitions of integers:
maximize the sum of the products of all pairs of adjacent terms
in an ordered p-tuple subject to the restriction that the
coordinates be positive integers whose sum is fixed (p>2).

In chapter I we consider the problem of maximizing the sum
of the products of all ordered g-tuples of adjacent terms in an
ordered p-tuple subject to the restriction that the coordinates
be positive integers whose sum 1s fixed (Ziqip). We give an
explicit description of a p-tuple which yields the maximum and
use it to find an approximation for the maximum.

In chapter II we alter the problem by allowing the
coordinates to be nonnegative real numbers. We again display
a p-tuple yielding the maximum, and we use it to find an

explicit expression for the maximum.
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Chapter O

Preliminaries

The purpose of this thesis is to study two generalizations
of a problem in the theory of partitions of integers: maximize
the sum of products of pairs of adjacent terms in an ordered
p-tuple subject to the restriction that the coordinates be
positive integers whose sum is fixed (2<p).

We are thankful to Professor S. D. Chatterji for bringing
this problem to our attention. The generalizations we consider
are: (a) solve the above problem, but take the sum of q+l-
tuples of adjacent terms (1<g<p-1); (b) solve (a) allowing
the coordinates to be nonnegative real numbers.

We state some definitions and notations.

Definition Let N and p be positive integers such that 2<p<i.

An ordered p-tuple of positive integers the sum of whose

coordinates is N is said to be an ordered partition of N having

length p.

The notation H(N,p) is used to denote the set of all
ordered partitions of N having length p. Throughout this
thesis N and p are considered fixed; so ¥ and p will be
suppressed. Therefore N(N,p) will be written simply as I.

Let ﬂ=(xl,...,x Jell, and let q be a positive integer

b
such that 1l<g<p-1. The set of positive integers 1s denoted
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by It. The mapping Oq:H——>I+ is defined by

P saQ
= Z X X

g (m)
a so1 Fi¥i41tFieqo

The integer g is considered fixed and as such will be

suppressed. So Oq will be written as o .
The number u is defined by pu=max o(m). We immediately
mell

notice that p exists, because II is nonempty and finite.

The first problem we consider in this thesis is to
express U in terms of the three fixed parameters N,p, and
q, and to display a partition Mell such that pu=s (7). This

problem is treated in chapter I.

In chapter ITI we solve a certain generalization of
the problem to real numbers.

Definition Let a be a positive real number, and let p be

a positive integer such that 2<p. An ordered p-tuple of
nonnegative real numbers the sum of whose coordinates 1is

0 is salid to be an ordered real partition of o having length

b.

M(a,p), o and U are defined for the real numbers as

q°’
the obvious analogues of the definitions for the integers.
Again, o, p, and g are considered fixed and will be sup-

pressed in notation. In chapter II we prove the existence

of U, find an expression for p in terms of a, p, and g, and

display a partition Well such that u=o0 (7).

Chapters I and II are self-contained; so the suppression



Py

of both N and o in notation does not lead to ambiguity in
the meaning of I as N(N,p) or H(a,p).

To facilitate using a simpler notation we state two
b
conventions. ) f£(i)=0 if a>b. If i<l or i>p, then

i=a
Brackets are used exclusively to denote the greatest
integer function. The notation ﬁ=(§1,..,ip) is reserved
for T such that pu=o(m), i.e. a bar indicates a partition
which yields the maximum u.
Given an arbitrary partition ﬂ=(xl,...,xp) in I
(either I(N,p) or N(a,p)), we construct new partitions

in 1T as follows:

T = (yl,...,yp), defined by

yi:xp—i+l for i=1,...,75

T o= (yl,...,yp), defined by
yl=xp s

vyi=x3y.1 for i=2,...,p; and

o= (Yl,---,yp), defined by

vyi=Xi41 for i=1l,...,p-1.

Let h and k be distinct fixed integers, l<h,k<p. If
ﬂ=(xl,...,xp)sn(N,p) is such that x,>2, then m<h,k>=

(y1s---5yx)€I(N,p) is defined by



Yh=xp+i,

Yr=xx-1,

vyi=x; for i#h k.
In the real case, if ﬂ=(x1,...,xp)€H(a,p) is such that
x.>€>0, (e a real number) then ﬂ<h,k>=(yl,...,yp)EH(a,p)
is defined by

Yy =X, tE

Y=Xx-€

yi;=x3 for i# h,k.

In the real case 7T<h,k> depends on €, so € must be explicitly

stated for m<h,k> to make sense.



Chapter I

Maximizing Over Positive Integers

We find in this chapter a partition 7 such that u=o(7).
Tsing T we obtain good, simple bounds for u. Our variables
x; are positive integers. The case N=p is trivial; so it
is assumed henceforth that N>p.

1.1 The Case g=1

In this section we consider the simplest case, viz.
g=l. The results of the next section imply the results of
this section. However, we present this case separately to
illustrate in simple form some of the technigues used in
the more general setting. The results given in this section
are essentially those of Professor A. Meir, University of
Alberta, and they were communicated to us in a letter. For

this we are thankful to Professor Melr.

Theorem 1.1. For g=1 the maximum u is given by:
¥ N+1
e e [ (2]
; Ne-p+
For p>3, U=2N—p—l+P%¥% [——g—l].

A partition T is given by:

=_ N N+1
For p=2, = (Eﬁ, LY?%).
- = Ui e
For p=3, = (l,[J ,[ 2]).
For p»3, = (1,1,...,1, [#"2+2 , [Ei%ﬁﬁ% ,J).
\—W—""_/
p-3



Proof. The proof is given in three cases,.

Case 1. P=2 We prove that in E, §l~;(2lil' Let mell be such

that xl—x232. Then

J (’ﬂ'<2 ,l>) = yly2

(x,-1) (x,+1)

+ - -~
X %, (xl X, 1)

=g (m).
Because p>g (m<2,1>) > g(m), it must be true that p¥s(w).
Similarly, if W=(xl,x2)€ﬁ is such that x,-x,>2, a
symmetric argument shows that uk(m).

So it must be that in ﬁ=(§l,§2), (X, -x <l. 8o 7m can

1 "2
N N+1 . R
be taken to be =, {—=|}, from which Yy is computed to be

2 2
N N+1] .
2 2
Case 2. p=3 g(m)= X2<Xl+x3)' It X, and xl+x3 are considered
as only two variables their sum is still N, and the problem

. s . . .= N
reduces tc the case p=2. It is sufficient to pick xp=|3

X +X - - Nl [u-1
and xl+x3= F%%% . So T can be chosen as T= (1,Lﬂ ;[ﬂg_])’
1

and J =Eq FE;]. This particular choice for T is made

because it coincides with a more general statement about 7

in the next section.

Case 3. p>3 First we prove xl=§ =1. Let mel be such that

S
xliE. Then
p~1
3 (m<3,1>)= yly2+y2y3+y3yh+.zu YiVia
1-—
p-1
= (xl-l)x2+x2(x3+l)+(x3+l)xu+izLL X %501
p-1
= Xlx2+x2x3+x3xh+.z X %41ty

L

1



So u#o ().

Similarly if in 7 szﬁ, then U (T). This establishes

that in T, x =x_=1.

1 7p

We now prove the following by induction on J: for j in
the range 1<j<p-3, there exists a partition T¥ell such that
u=0 (T*) and x* =1 for i=1l,...,3,p-
i

For j=1 the existence of such a partition has already
been proved, for select any partition well such that u=c (7).

Now assume that for l<j<p—h there is a partition

FOocT such that u=0(w°) and iz 1 for i=1,...,j,p. We seek

to prove the existence of a partition ﬁ*=(§;,...,i;) such
that pu=0(7T*) and §§=l for i=1,...,j+l,p. We use induction
zo n¥* exists.
on Xj+l to show T
If ig+l=l, the existence of 7¥ is trivial, for let

Assume now that if §?+1=D—l, the partition 7% exists.
J

Now let x —D>2 Consider ®°<j+3,J+1>.
(’“k3+3’J+l> i yiyi+l+yj+lyj+2+yj+2yj+3+Yj+3YJ+M
p-1
+ ) ViVi+l
i=j+

o Jeif o) = = 20 <0
_.%lxixi+l+x3+2+x3+2(xj+l+xj+3—l)
1=

- Pil -
+(x + 1) x2x¢
J+1 T3+3 j+h et i+l
p-1
= .Z X§X§+l+(XJ+l—l) j+h
i=1



Because yj+l=D_l’ we can invoke the second inductive
hypothesis to assert the existence of m¥* for Ezj+3,j+l>
and hence for T in which i3+l=D. This completes the in-

duction.

In particular, for j=p-3 there exists a partition T
such that §i=1 for i=1,...,p-3,p. We show next that
ip_guip_l <1.

Let ™ be such that Xi=l for i=1,...,p-3,p, but such

that Xp—2_xp-l>2' Then

O(W(p—l,p—2>) = izlyiyi+l+yp_3yp_2+yp_2yp_1+yp_lyp
P-4
) iglxixi+l+xp-3(xp-2—l)+(XP"Q—l)(XP—1+1)
+(X_—l+l)xp
p-1
= X.X. +x -X -1
+ -2 -1
= 171+1 D P
> og(m)+l
> 5(m)

So u# (m).

Similarly if mell is such that x;=1 for i=1,...,p-3.,%

x >2, then uk (m).

but such that Xpo1 Fp-2

Consequently, for the choice of T above it must also be

true that |§p_2‘ip—l|£l'
So T can be chosen to be

-p+2 N-p+3
(l,l,..‘,l,[Ng ][ i ]1)

From this p can be computed to be

p= 2N-p-1+ Fﬁiﬂ [liﬁiéﬂ. 1

i

2 2



1.2 The General Case

In this section we solve the problem of maximizing
over the positive integers in the general case. In section
1.1 we obtained our results by comparing o(7m) and 7 (mw<h, k>)
for some astute choice of h and k. This technique is wval-
uable in the general case as well. So we first state the
exact relationships between o (7m) and 5(F), (%), anad

~

o (m<h,k>). Evidently o(m)=o (7).

Lemma 1.2.1 Let the distinct integers h and k in the

range 1<h,k<p be such that [h—klig. Let ﬂ=(xl,...,xp)EH
be such that xp>2. Then
(i) If k<h, o(m<h,k>)o(m)=
k h h~g-1
anxh"l z Xi"'xi+q+ L Xi"°xi+q" by Xi' "Xi+q
X k k-
Xy Xy h-q h k+1 a
(ii) If n<kx, o(m<h,k>)-o(m)=
' h k-g-1 k
3 1
Xy —Xp-1 X....x,, +1 % X weoX,, =~ = Xoww X
EEea— ygh i it+g X, hog 1 1+qg Xy hgl 1 1+a
*n¥k {-gq S
Proof of (i). o(m<h,k>)
k-a-l h-g-1
= I yi+q+ z i Yi+q
1 k-g
k h
+ 1y “Yi+qgt L Yi++ Vi+q
h-q k+1
Piq
+ y 'Y'+
n+l * trd




k

(x,-1)(x _+1 +
+ k )(h ) ZXi...Xi+q+Xhl
Xy Xy h-q Xp
P-q
+ Z KjoooXgy oo
h+l a4
1 k 1 h
= o(m)+ Zk™Xh7= Y S TERRE PO X3
*h¥k  h-g h x+1
h-q-1
1
- = zxi"'xi+q'
Xk k-q

The proof of (ii) is symmetric to (i); hence

given here..

Lemma 1.2.2 Let 1<k<p-1. Then

(i) 1If x,.>2, o(m<k+l,k>)-0(m)=

k
1 k
e Xx+1” z X ...X. +Xx Ce X -X
X x. . k+l-q T i+q k+2 k+1l+q
kXk+1 4

(ii) It X, 11225 o(m<k, k+1)- 5 (m)=

10

h

z Xi...Xi+
k+1 4

it is not

k
X -x, -1
k k y X X - e e e 3
Erl k et i P aq g Fko1 T k42 Tkeleg
“kFr+1 -4
Proof. This lemma is a special case of lemma 1.2.1. |

Lemma 1.2.3 Let the distinct integers h and

1<h,k<p be such that |h-k|>q. TLet T=(x,..

that x3>2. Then o (m<h,k>)-o0(m)=

S 1
1 z XieroXi49™ T

li
XeoeoeoX.
1 1+

Xk k—q a

Proof. The proof involves breaking o (m<h,k>

k in the range

.,x_ )€l be such

b

) into five
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partial summations as in lemma 1.2.1. Because it is but a

variation of the proof of lemma l.2.1, it is omitted.l

Lemma 1.2.4

SR

(i) o

) - G(ﬂ)=xpxl...x -x ... X

(ii) o(W)= o (m)= "Xy eiaXg gy

> p-a
U(TT) = yl...yl+q+i_ yl"'yi+q
p—§~l
= prl. Xq+ N Xl Xi+q
P-q
= XpEpeeeXgh L Xge.oXjeq-Xp_geeeXp
i=1
= 0O(T)+HX X, ¢.4eX =X o s o X
() pl qa “p-q P

The proof of (ii) is symmetric to (i); so it is omitted.

The next lemma proves the existence of a certalin par-

tition needed in theorem 1.2.6.

Lemma 1.2.5 Let Tell be arbitrary but fixed. Let the fixed

distinct integers h and k in the range 1<h<k<p be such that

g<k-h. Then there exists a partition W°=(xi,...,xg)eﬂ such
that

(i) ag(m®)> (m),

(i1 o= o

(i1) xp=1 or xp=1.

(ii1)  x9=x; for i#h,k.



Proof. If in m, xp=1 or xp=1, let m°=7 and the lemma is

proved. So assumnme thQ and kaQ.

From lemma 1.2.3

h 1
og(m<h,k>)c(m)= L z XoeweX,, = — z K. wweXs
+ +
Xp p-g 1 ita xy K-q i i+qg
h ) %
=——l ZX X + X.ooooX.
— 2 " e '+ —— l l+
( Xy h-g i Tta oy k-q q

-( G(ﬂ<k,h24§(ﬂa .

Thus 0 (T<h,k>)=0 (7)>0 or o (n<k,h>)-0(7)>0.

Case 1 o f{m<h,k>)~0(7m)20. The existence of w° satisfying

x§=1 is proved by induction on x.

If x

k=2, let m°=m<h,k> and the conditions (i)-(iii)

are satisfied. (In particular in (ii), x§=yk=xk_1=l.)

Now assume x, =D, and that m° satisfying (i), (iii)
and x§=l exists for 7' in which xy=D-1. We note that in
m'=1<h,k>, x£=D~l. So the inductive hypothesis can be
applied to w<h,k> to produce m° for 7m<h,k>. We verify
that 7° satisfies {(1)-{(iii) for 7 as well.
(1) o (7°)>6(n<n,k>), by inductive hypothesis,

>3 (w) , by assumption for case 1.

(ii) xp=l, by inductive hypothesis.

(ii1) X§=yi for i#h,k, by inductive hypothesis,

1

x, for i#h,k, by definition of mw<h,k>.

This completes the induction for this case.

Case 2 og(m<k,h>)-0(m)20. The proof is dual with case 1;

so it is omitted. U

12
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Theorem 1.2.6 There is a 7% in Il such that for some

integers m and n in the range l<m<n<p such that m+gq=n, it

is true that §§=l for i=1,...,m=-1,n+l,...,p.
Proof. Let ﬁ be fixed. Select r and s so that iri2 and
x;=1 for i=1,...,r-1; X>2 and X;=1 for i=s+l,...,Dp.

The existence of T¥* is proved by induction on the
difference d=s-r from 1 to p-2. (For d=p-1 the theoren
is vacuous.)

For d4=1,...,q, let ﬁ*=ﬁ, and the theorem is trivial
for some suitable choice of m and n in the ranges 1l<m<r
and s<n<p.

Assume now that for any m°, in which r® and s°® (defined
similarly to r and s) are such that s°-r°=4°<d, a partition
T¥ exists.

Let g<d<p-2 for ™. Applying lemma 1.2.5 to T with
h=r and k=s, we get a partition T° satisfying (i)-(iii),
lemma 1.2.5.

From (i) we have G(EO)ZJ(%)=u. And from (ii) and
(iii) it follows that d°<d. So we can apply the inductive

hypothesis to T° to produce T¥*, i

It is possible for T to be such that p=o(m), but that
the condition in theorem 1.2.6 fails for w. For example,
let N=7, p=3, q=1. It turns out that y=12. The partition

(2,3,2) yields u, but it does not satisfy theorem 1.2.6.
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On the other hand, the partition (1,2,4) satisfies x;=1
for i=1,...,m-1,n+l,...,p for m and n such that n-m=g=1,

but (1,2,4) fails to yield u. The partitions (1,3,3) and

(1,4,2) satisfy both conditions.

In theorem 1.2.7 and the two lemmas following it T
designates a partition of the type whose existence is proved

in theorem 1.2.6.

Theorem 1.2.7 There exists a partition ¥ such that

Xi‘xi+l|il for i=m,...,n-1.

The theorem is implied by the next three lemmas.

Lemma 1.2.8 If in m, 2<m and n<p-1, then |X;-%j4+1[<1 for

i=m,...,n-1.

Proof. Let 7 be such that x;=1 for i=l,...,m-l,n+l,...,p
for some m and n such that n-m=q. But assume |Xk'Xk+l|>2
for some k, m<k<n-1. We show u# 7(7).

Case 1 Xp-Xy4122. By lemma 1.2.2, 7 (m<k+1l,k>)-0(m)=

X

k
Xp=Xp41-1 % X.eooX +x Kog® "

« o s X -
i c i + k+2 k+1-
X Xk+1  k+l-q T 4

k
> 1 ) ox

Xk Xk+1 k+l-q

X

i"'xi+q+xk+2"'xk+1—q— k-q" "

If k-g<1, then Xk—q"‘xk—l=0‘ Hence

o (m<k+l,k>)=o(m)> *1°--*14+4 >0.
XpXr+l
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If k-g>1, then o (m<k+l,k>)-o(m)>

“k+1l-q° " Fr+1l , Fx+o-q Tk _ o
XX+l XXy 41 k-q k-1

= (x e X +x e e X -X "'xk+l)
X Xy 41 k+1l-q k+1 “k+2-q k+2 Tk-q

X « o o X
- kK+2-g k+2, because Xk_q=la

kak+l

>0, because k+2<p.
In either case,uzg(ﬂ<k+l,k>)>3(ﬂ).
Hernce p#0 (7). This implies the lemmsa.

Case 2 xk+l—xk22. The argument is duval to case 1. Hence

it is cmitted. l

Lemma 1.2.9 1If in T either m=1 or n=p (but not both), then

— -
there exists a partition 7' such that |Xi‘Xi+1 <1 for

i=m,...,n-1.

Proof, The proof is broken into two symmetric cases.

Case 1 m>2 and n=p. If m<p-2, then using the same argument

as in lemma 1.2.8 it can be established that [Xj-Xj4q1<1

for i=m,...,p-2.
Now assume that ip—l<§p' We show uso (m), a contra-

diction. From lemma 1.2.2, 0 (T<p-1,p>)-c(7)=

- - p-1
Xo=X _1-1 = =

X Co.X - v eeX
“ppols ) T PV X0 %541 p+a

p-1-p i=p-q

iXp_l_ qo .. Xp_2
>0.

Hence u# o(m). This implies that in T,% _,>% .



Now we prove Xx <x_+2 in Tm. For assume X

>X .
p-1=%p p-12%p*3

We show u#0 (7). By lemma 1.2.2, o (T<p,p-1>)-0(T)=
-1 Pzl

X -X - - - - - -
-1

—E_——g——. z Xi-.-Xi+q+Xp+l.-.Xp+q—Xp_l_q-..Xp_2
Xp-1Xp i=p-gqg

>_ 2 ce X - X
=5— "p-q* " Fp ¥p-l-q* - ¥p-2
p-17p
But % =1. So o (F<p,p-1>) (7)>2p=a-:-¥p
p-1-q . Psp Z—= = >0.
Xp-1Xp
So U#I (W). This contradiction establishes that Xp_ 18X+

in 7.

We have shown so far that in 7 it is true that

Xi'§i+l|il for i=m,...,p-2, and ip_l—ip=0,l, or 2. If

xp_l-xp=0 or 1 the lemma is proved.

p-1""p 1
=1 Zy=X,_1-Xp-1 [N 3 b o -X X
o (7)o (7) pil § i=g_qxl Xi4g ¥ p+1 p+q *p-1-q p-2
p-1*p
> }_Cp_q ;(p - -
_ }_{p_lxp "Xp_l_q. Xp_2

0, because Xp-1-g=1.

So u=o (T)<o (m'). Hence u=s (T'). Consequently it must be
-r . -1 - | s

that Ixi—xi+l|§l for i=m,...,p-2. And Xp-1-%p —Oil- This

proves the lemma for this case.

Case 2 m=1 and n<p-1l. The proof is symmetric to case 1;

so 1t is not given.l

In the example given earlier, the partition m=(1,4,2)
is an example of a partition for which it is actually
necessary to carry out the construction in the proof above

to obtain the partition 7'=(1,3,3).
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Lemma 1.2.10 If p=o(m) and p<l+2q, then xi—leil for all

i,J such that pP-q<i,j<l+q.

Proof. Let T be such that xk—xhz2 for some h and k¥ in the

range p-q<h,k<l+q. We show p#o (7).

Case 1 k<h. By lemma 1.2.1, o(n<h,k>)-0(m)=

x 1 k h 1 h-g-1
—X -
k h ZXi.o-Xi+ +l’. zxi...xi+—_ Xi.-.
9% qa X
XpXg  h-q h k+1 k k-q
k

> 1 z xi...xi+q

Xth h—q
>x1...xl+9

*n*x

>0.

So u# g (m). This proves the lemma for this case.

Case 2 h<k. The proof is not given, for it is dual

to case l.'

A special case of lemma 1.2.10 is the case m=1 and

n=p in the partition 7 of theorem 1.2.7. In this case

|ii—ijL§lfor l=p-g<i,j<l+g=p. This special case and lemmas

1.2.8 and 1.2.9 give us immediately theorem 1.2.7..

The next four lemmas are preparatory for the next main

result, theorem 1.2.15.

Lemma 1.2.11 Let p<l+2q. Let 7ell and m'ell be such that

(xg_q,---’Xﬁ+q) is a permutation of (Xp_qa"'axl+q)’
/

xi=x; for i=1,...,p-q-1,2%q,...,p. Then o (m')=o(7).

and
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Proof.
b=qa
g(mw) = Z XyweoXs
+
i=1 74
bp-q
= Xp-q"'xl+q lzlxl . xp_q_lx2+q. ‘Xji4q
= x Xl pi‘-q ’ ’ 4
p-q’ " T1l+g 1=lxl ) Xp-q—lx2+q' Xi+q
_ piqx' S
- i1+
i=1 4
=ag(n). |}
Lemma 1.2.12 If p=0(m) and 1+2q<p, then xp <o SXq and
X > >X_ .
b-a— — D
Proof. Assume that xy>xy4q for some k in the range 1<k<gq.
We show p#o(m). By lemma 1.2.2, g (m<k+1l,k>)-0(m)=
. _
X, =X -1
k " k+l z X X +x X ~X X
S S S S S IPRIREE S Keg® Xy
Xy Xpp] i=k+l-g i i+q k+1l+q o} k-1
2Xpa2t  FRaleg
>0.
So u#c(m). This establishes that if p=s(m), then X Se e SX) 4y
A similar argument proves that xp_qz...zxp. |
Lemma 1.2.13 If p=o(w) and p<l+2q, then x3<...<x,_ 4 and
Xl+q2 e -)Xp.
Proof. The proof is in the same spirit as the proof of

lemma 2

.2.12. So we omit it.l
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Lemma 1.2.14 Let p<l42q. If u=s(m) then

(i) xi§xj for i=1,...,p-q-1 and j=p-q,...,l+q,

(ii) x.>x

32%4 for i=2+q,...,p and J=pP-q,...,1%q.

Proof of (i). Let m™ be such that xk>xh for some h and k

in the ranges 1<k<p-g-1 and p~g<h<l+q. We show ugo(m).
By lemma 1.2.1, o (mw<h,k>)-0(7)=

-x. -1 Kk

X ~%p 1 0 1 h"%‘l
P . . e e e o X. + = e e e X - = .
% z Xl X1+q Xh kg‘_lxl X1+q Xk . XsaooX

>0.
So w#o ().

A similar argument establishes (ii).}}

For reference in the next two theorems we state five
conditions for partitions in I.

(1) wu=o(m).

(2) x;=1 for i=1,...,m-1,n+l,...,p, where n-m=q.
(3) lxi'xi+l|il for i=m,...,n-1.
(L) Xp<.+.<x.>...>xy for some c, m<c<n.

(5) Ixi—xj[iQ for i=m,...,n and j=m,...,n.

Theorems 1.2.6 and 1.2.7 guarantee the existence of a

T satisfying (1)-(3). We show next there is a 7 satisfying

(1)-(k).

Theorem 1.2.15 There is a partition mell satisfying (1)-(k).




Proof. We consider two main cases, p<l+2q and p>l+2q.
The case p<l+2q is further divided into subcases.

Case 1 pgl+2g. Throughout this case ® is a partition

satisfying (1) and (2).

Case la m=1, n=p. Define 7' by permuting Xysee X SO

p
that xii...ixgz...zx% for some ¢, 1<c<p. By lemma 1.2.11
o(m'")=o(m)=p. ©Now 7' satisfies (2) vacuously. By lemma

1.2.10, 7' satisfies (3).

Case 1b m=1 or n=p, but not both. We consider first the

case m=1 and n<p-1.

Let 7 satisfy (1)-(3). Now define m' by permuting

'—

i=X4

so that x/ <...ix1+q and by letting x i

xp_q,..._,xl+q p-a5
for i=1,...,p-q-1,2+q,...,p. We show T' is the desired

partition.

By lemma 1.2.11, og(m')=o(m)=u. And by definition

x;=xi=l for i=2+q,...,p. So w' satisfies (1) and (2).
‘< 4 0 d x. < <x
Now Xl—f"fFP—q by lemma 1.2.13 an Xpagle e ZX14q
L. . _ /7 ‘7 7
by definition of m'. 8o for c=l+g, X]=Xp<...<XZX7445Xp,

i.e. (4) is true in w'.
Finally, for i=1 —q-2, | xi-x7 . |=]x;-x, ;|1
inally, for i=1,...,p-q=2,|X;-%X; 4 PR SRR RS
’
And for i=p-qQ,...,Q, x;—xi+l|il by lemma 1.2.10. DNow

< /
*p-gq-12*p-q-1

’
<Xp_q> by lemma 1.2.1h,
< .
2¥p-q
. ’ ’ <1l.
p-qlil it follows that xp_q_l—xp—q

So from pr_q_l—x

So ' satisfies (3).

20



a3l

If m satisfies (1)-(3) and m>2, n=p, then T satisfies
(1)-(3) also, and the above proof can be applied to T.

Case lc¢ m22, ng<p-1l. Define W' by permuting Xpegs 9 ¥leg

4

/
so that Xé—qi"'ixci"'ixl+q and such that x5 =x.

i i for

i=l,...,p=-q-1,2+q,...,p. By lemma 1.2.11, c(m')=0(m)=u.
/ / / /
By lemma 1.2.13, Xli"'ixp—q and Xl+qi°~-ixp' So

/ ’ /. ' B ’ for
Xm<"‘ixci"'ixn in 1. ecause Xji=Xj o

i=1,...,p~q-1,2+q,...,p (and hence for i=1l,...,m-l,n+l...,p),
’
we have xi=xi=l for i=1,...,m-1,n+l,...,p. Consequently,

1

m' satisfies (2). Finally, 7' satisfies (3) by lemma 1.2.8.

We note that in cases la-lc, 1t is possible to choose
¢ so that 1+g<c.

Case 2 p>l+2g. Let T satisfy (1)-(3). To avoid the trivial

cases, assume m>1, n<p, and assume that there are two non-

adjacent non-ones in b SHNEITIED S
For i=m,...,n=1, define ¢i by
¢i=x1_q. Xy 17 %5400 Fisl4q
Now (bm:Xm_q . -Xm_l—Xm+2 . 'Xm+l+q_
< 1-2
< 0.
And ¢n.—1=xn-l-q' * xn---QQ-XI’l-i-J_ v 'Xn+q_
> 2-1
> 0.

For m<i<n=2,

L T R e UL L T P B R S PR RS BB PSR E!
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= (x.-x, ) =di-g--%*i

X . e X,
+
Xi—qxi ) i+2 i+2+qg

+(xi
Xi+2%Xi+2+4q

+2_Xi+2+q

Hence ¢, <...<¢,_7-

Let r be such that ¢,<0 and ¢,47>0. Let s be such
that ¢5_1<0 and $5>0. Then m<r<s<n.

We now show that XpSe«+fXpyy. For assume that for
some fixed k, m<k<r, it is true that x,>xyp4;. Then
xk=xk+l+l because T satisfies (3).

Then by lemma 1.2.2, o0 (7w<k+l,k>)~0(m)=

k
(xg-xp41-1) 7 «
P & -X e e e X +x e e o X
XXy 1 k+T-g 1 i+g "k-qg k-1 Tk+2 k+1l+q

=T Xpeqr tX¥x-1T k42 Fkeleg

=—¢k

-9,

>0

So pu#s (m). But this contradicts the choice of m. So

> SWASTIRINILS SWE I

A similar argument proves that x >...2>x .

Next we show that ¢;=0 for at most one ¢; in the
sequence ¢m,...,¢n_l. Assume now that ¢j=0. Necessarily
¢j-q"'xj—l and Xj+2"'xj+l+q both vanish or both are non-
vanishing and equal. If xj—q"'xj—l and Xj+2"'xj+l+q

both vanish, it follows that p<2q, which is not under con-

sideration. Therefore it must be that xj—q"'xj—l and
X

j+2"°xj+1+q are equal and nonvanishing.



Assume further that ¢J+l=0. Then
O=¢j+l

: X
a—d XX - X;i; X542+ X3414q

X . .
J X342
Consequently xj=xj+2=l.

If only ¢35 and ¢547 vanish, then
Xple. . ZX3 = l=x3542>...2%5. So only X347 1s a non-one,
contradicting the choice of m as containing two non-ones.
If there are three or more elements in ¢m""’¢n—l which
vanish, a similar argument proves that xp=...=xn=1, again
a contradiction.

Thus we have s<r+2, and xp<...<Xp4]:Xp4p02++2Xp"

Let x,=max (Xp4]-Xpsp). Then xp<...<xo>...>x,. B

Theorem 1.2.16 If 7 satisfies (1)-(4), then 7 satisfies

(5) also.
Proof. Let 7 satisfy (2)-(4) but not (5). We show

u#o (m).

Assume without loss of generality that x,<x,, for other-

wise the following proof can be applied to m. Now define h
and k by

x;=xp for i=m,...,h and xh+l#xm3

xklxh+3 and x,<x,+3 for i=k+l,...,n.

We note that h<c<k and that X3>xy for i=h+l,...,k-1.




Xh+1e
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By lemma 1.2.1, o(m<h,k>)ac(7m)=

X =X -1 i 1 k—g—l 1 k
__B_E___ z Xi"‘xi+q+§ Xi"'xl'f'q_ —};k z X - x1+q
*n¥k  k-q b h-q h+1
k
> 2 XpeeeXp- 1 ) Xi++-Xitg
XhXk X h+l
k
Z g Xh+l"'xn' _]; z Xi...Xi+q.
Xk x, h+l
k
Now Xh+1l:**%n _ ﬁ_l_ z Xi"'xi+q' k ‘Xp =
XK Xg ht2 X}
k
Xh+l+++Xp Xg--++Xn Z x, Xi+ Xy _xk. %2
Xk Xk i=h+2 Xk Xk
X . X -
= kx Bo{xpype X 1 Fhen s Xko1¥n ¥ a3  ¥k-1%n
k
cvo~Xyp_]Xn-Xp-11}
X n {(xg g (xgop(xgoze v (xpep(xpey-%p) -xp)
Xk
..—xh)—xh)-xh)—l}
>0, because x;>x, for i=h+1,...,k-1. Thus
4 cee
no > *h z Xjee-Xj4q*F *x *n
Xk h+2 Xy
X k
h z Ko wooX,
— +
Xy h+2 * T
X X X 1
= h+l- . e n +
So now < z Xy xi+q : = Xl"'xi+q
k' h+l Xy Xk n+2
Zh+l - -¥n + 1 xpyq..eXp
xk xh Xk
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Using these results in o(n')=(7m) gives finally

k
g (ﬂ')—g(ﬂ)z_thll.—. ._X.n - ;L_ Z X ‘Xi+q
Xk Xk h+l
N 2Xh+l..-Xn _ Xh+l Xp41- +%n
-_— *
Xk Xh Xk
> 0.

so p#a(m). 1

For reference through theorem 1.2.19, we state some
conditions for partitions in .
(1) u=o(m).
(2) xi=l for i=1,...,m-1,n+l,...,p, where n-m=gq.
(3) |xi—xi+llil for i=m,...,n-1 and

|x.-x.|<2 for m<i,j<n.

i 73t= — -
<c<n,

(b) x <...<x >...>x for some c, l4g<c<n
(s5) 2<x <X .
6 oo X <X ce X
(6) xy qQ "p-q p
A partition satisfying (1)-(6) is denoted by T.

Furthermore, if g satisfies (2)-(6), the numbers

r,s, and t are defined as follows: If xi#xj for some

i and j, m<i,j<n, then r is such that

X

i=%x

m for i=m,...,r and X, 1=Xp+l.

If xi—xﬂkl for some i and Jj, m<i,j<n, s and t are such that

X.=X_+1 for i=r+l,...,s and x =x _+2.
i " m m

s+1

X.=X_+2 for i=s+l,...,t and x #x +2.
i" m m

t+1
The requirement Xn <Xy is actually no real restriction,

N
for otherwise T can be considered. However, 2<xy, is a
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definite restriction. We treat sepurately the special case

in which some of the numbers Xpo+++»X, are one, and for

the next several theorems we assume xiiE for i=m,...,0.

In (L4) the selecéion of c in the raunge l+a <c<n
is possible, as noted at the end of case 1, theorem 1,2,15.
The significance of this choice for ¢ is that if x.-xj|>-l
for some 1 end j, m<i,j<n, then 1+qg<c<t.

To assert the existence of a partition W, we now need
only prove we can construct a partition satisfying (1)-(6)

from one satisfying (1)-(5). This we do in the next lemma.

Lemma 1.2.17 If 7 satisfies (1)-(5), then there exists a

T' satisfying (1)-(6).

Proof. If p=q+l, the lemma is trivially true. So assume

that p>q+l. Assume now that in T, x X

v e X 22X .o .
1 Q- p-q P
Then it must be true that n<p and xp=l.

By lemma 1.2.L,

o (M) (m)=x_x

ce X —X cee X
pl qQ "p-q p
=X-....X_ -X cee X
1 a Pp-q p
>0.
So u=y (7).
The sequence Xp,.-.5%p is untouched in T except for a

shift to the right; so it is immediate that (2)-(5) hold in

-
>

m.
A sufficient number of repetitions of this shifting to

the right will produce a 7' satisfying (1)-(5), and such
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¢

’ 4 /
that xl...xq<xp_q...xp, if for no other reason than that

(Xm,...,xn) will eventually be shifted to the position

’ ’ . .

xp_q...xp, in which case x;=xn32 and ] <p-gq guarantee that
’ 4 ’ /

Xl"'xq<xp—q"'xp° '

The next goal is to produce a partition T such that
;i—ij <1 for all i and j in the range m<i,j<n. Unfortu-
nately, there are partitions satisfying (1)-(6) in which
this condition fails. We give an example of one after the

next lemma, which states several sufficient conditions for

ii-ijlgl.

Lemma 1.2.18 Assume that in T, |x.

l—ij|=2 for some 1 and j

in the range m<i,j<n. Then
(1) ¥_ <X
(ii) r=m.

(iii) 1+g=t.

Proof. From lemma 1.2.10 the lemma is vacuously true 1if
p=q+1l. S0 assume without loss of generality that p>l+g.

Throughout this proof 7 is a partition satisfying
(2)-(6) and ‘xi—xj|=2 for some i and j in the range
m<i,j<n.

By lemma 1.2.1, g (m<r,t>)=(m)=

t-q-1 '
Xy-Xp—1 S 1 % X X3 X & X X
ZXi.--Xi+q+_ i 1+q_x g0 1+q

X Xy t-q Xy r-gq tr+1
trg-1 +1 X
1 5 N « L 1 % « < X “.Xr+l n
> i Fi+g X i i+ x. i
X Xy glq Xr yoq Y Xt

as in lemma 1.2.16.
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Proof of (i). Assume that X,=X,. We show p#o(m). For

g(m<r,t>)c(7m) >

Xp4l+++Xp N Xyt X1 _ Xptl . Xpgl+++Xp
Xy Xt Xr *¢
=Xr+l"'xn xpt+tl xr+l Xr+l"'xn, because X=Xy =Xy
Xt XI‘ XI‘ X_t
=Q.
So u#s (m).
Proof of (ii). Assume r>m. We show pfo(m).
g{m<r,t>) o (m)>Xmtl - ¥n Xp-- Xp  Xptl | Apgp.- Xy
Xr¥g XpXg Xy Xt
> X+l L Xp+lec Xy Xpyg Xop1e Xy
Xy Xt Xr Xy
= 0.
So u#s (m).
Proof of (iii). From condition (4), 1l+g<t. Assume that
l+q<t. From (i), x;=x,+1 for i=t+l,...,n. We show
u#o ().
g(m<r,t>)c{m) >
r t-q—-l
Xp+l Xpple+-X
1 Z Xi"°xi+q + _l_ Z Xq- -Xi+q-— " or ” n
X ¥y t-g Xy T-Q r t
n
X x _x.+1 X . X
>Xp4lev-Xgol ) LE Loy Xps1eoxgp7 52 24 —=
i=t Xt T X
n-t
=x Xy l( y Xt-r*a l)~ Xp+l L fr+lccc¥n
r+l “\i=0 Xt(xr+l)l Xy Xt




n-t+1
=Xr+l"‘Xn Xt -1 x,.+1 X x_+1
Xy (xp+1)0-t+1 Xy (xr+1)n‘t+l Xy
_ xr+l . Xr+l “Xp

Xy Xt

- ~t+

Xpg1 Xp xp+1 (xr+l)n t+l-1+xr-(xr+1)n t+l

Xt XI‘ (Xr+l)n—t+l
>0.
so udo(m). B

We present the following example to show that lemma
1.2.18 is not vacuous. Let N=19, p=8, and q=L4. It turns
out that W=576. Let T be given by 7=(1,2,3,4,4,3,1,1).
Then T satisfies (1)-(6). But Iii—ij|=2 for i=2, j=5.
Necessarily T also satisfies (i)-(iii) of lemma 1.2.18.
The partition T' produced in the next theorem 1is

:ﬁ-'=(l,3,3,h’,3,3al)l)-

Theorem 1.2.19 There exists a partition m' such that

1§;—§3L§1for 2all i and j in the range m<i,j<n.

Proof. Let 7 be such that ]ii—§j|=2 for some i and j,
m<i,j<n. Let m'=T<m,t>. Evidently, T' satisfies (2)-(6).
From lemme 1.2.18, |ii-ij|=2 only when i=m. So in

- Ry — .
Ty, xi—xj <1 for all i and J, m<i,j<n. To complete the

proof we show u=s (m').
We now prove m>p-n in three cases.
Case 1 p=-ag<s.

_ S-m _ t-s-1 _ -
(X,+1) (X +2) = %y...%

X
m



-p+g+l, - t-s-1,- n-~t
1)8TPFA Lz oyt h iz 4,

- (= - - ~-p4+g+l+n-
Hence Y (X +1) ST < (% +1)57PFa i+n-t
So log Xplts-m € s-p+g+l+n-t.

[+
Conseqguently m > p-gq-l-n+t.
Becauze t-q-1=0, m > p-n.

Case 2 s<p-ggt.

z (3 p-q-m-1/(= t-ptq_
xm(xm+l) (xm+2)

7 (% S~m(3x -s-l+p-q(zx t-p+
xm(xm+l) (xm+l) p Q(xm+2) pPtq

m'“m n

=§m(im+1)s‘m(- 4oy b-s-1

=Xq. iq

Fpog gp

=(§m+2)t“P+Q(§m+l>n—t
dence p-g-m-l<n-t. It follows that m>r-n.
Ci 3 t<p-g
¥ ¥ +1)t—ﬂ—l=§m(§gl)s— ,-m+;)t—;~1

=(3 n-p+g+1
=(X +1)8-P*q

80 t-m-l<n-p+q+l. This leads to m>p-n.

Let M=min(%t.,p-g). We now show ussy(m'), o(m')-o(7w)=



- - m t-qg-~1 t
X,=-%x_ -1 - - - = 1
t 1 . .- = z
t m z RiwooRypqt 5 Z Xjeo Xi4q Z. Z Xi.
XmXy, t-q m m-q m+1
) L g
=—1 XioooXs - = z X X;
== i i+ = i i+
Xm¥¢ t-q 4 Xt m+l 1
- - - - M - -
. % x@. xy ' X1 X, _ z XgooaX)
—i=¢ *m*t Ep+1- - Zn4m-i i=m+1 Xt
n 3 M - -
= Z *n-m-i+1° " *n _ X XijeeoXp
i=t Xy i=m+l %t
_ n+m§t+l ii"‘in _ % ii. .in
X h:4
i=m+1 t 1=m+1 t
M =. - M = -
SN =ENES - WS B SERTLY
i=m+l t i=m+l Xt
= 0.
Hence u=o(7').
In the +tuLirg step, multiplication by fi+l---fn
*m+l- - *n+m-1
) ) % % z_+1)n-1
is permissible because ~i+l'‘'**n < ifp ) - < 1.
Xm+1 *Xn+m-1i (im+2)n—1
Use of m>p-n is made in the sixth step to prove
n+m-t+1 > p-q > M.
For reference through theocrem 1.2.22, we state some
conditions for partitions inll .
(a) wuso(m),
(b) x;=1 for i=1,...,m-1,n+l,...,p, where n-m=q.
(e) If x;#x; for some i and j, m<i,j<n, then there are

numbers r and s, m<r<s<m, such that xi=A for

i=m,,..,r=-1,s+1,...,n, and xi=A+l for i=r,...,s.

(a)

The

2<A.

A partition satisfying (a)-(d) is denoted T. We continue

number A in (c) and (d) is defined to be A=min(xy,x,) -

™

i+q



to defer the case where some of Xpoe++X, are one. The
final goal before computing u is to prove stringent re-

strictions on the positions of m,n,r, and s. We accomplish

this in the next two theorems.

Lemma 1.2.20. In 7 one of the following is true:

(i) m<l+q and n>p-q.

(ii) m>l+q and n<p-gq.

Proof If p<l+2q, then m<p-q<l+g<n and (i) is true.
So assume without loss of generality that p>1+2q.

Let m satisfy (b)-(d), but assume m<l+q and n<p-q.
We show u# (m).

By lemma 1.2.4,

o (T)=s ()
=X X+ ...X_ =X el X
pTl qa "p-q p

>x -1

i

>0.
Hence p#s (7).

Thus in 7, if m<l+g, then n>p-q, i.e. (1) is true. A

similar argument establishes that in 7, if m>1l+q then (ii)

is satisfied.l

Theorem 1.2.21 If in T, X;=X

1Xq for i=m,...,n, then there

is a T' such that in @', (m+n)-(1+p)=0 or 1.

Proof.

Case 1 m<l+g and n2p-q. Assume without loss of generality

that p>l+q and that m>1. Let 7 satisfy (b)-(d), but assume
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that (m+n)-(l+p)>2. We show u# (7).
From lemma 1.2.L4,

O(ﬁ)«I(ﬂ)=xpxl...xq-xp_q...xp
>Al+q—m_An—(p—q)+l
>0.

Hence u#s ().

So in m, (m+n)—(l+p)§l. A similar argument establishes

that (m+n)-(l+p)>-1. So the conclusion holds in either T

~

or TmM.

Case 2 m>l+q and n<p-g. In this case both g (1) (7) and

o (%)< (m) vanish. So the sequence Xp,...,x; can be shifted
to the required position to produce 7' in which u=3 (m').
Lemma 1.2.20 guarantees that the two cases are exhaustive.l

Theorem 1.2.22 There exists a 7' satisfying

(i) (m+n)-(1+p)=0 or 1

(ii) (r+s)-(1+p)=0 or 1

Proof. We consider two maln cases: 1+g<m, n<p-q and

m<l+q, p-q<n. These are exhaustive in light of lemma 1.2.20,

Case 1 1l+g<m, n<p-g. We establish (i) by the same argument

as in case 2, theorem 1.2.21.

Assume (r+s)-(1+p)>2. Now from lemma 1.2.1,
_ s-gq-1 1 s _ _
5 (F<r-1,s>) < (T)= % % Rive Rigg=S L Xi---Xi4
X 1 1+ % . a
r-1 r-1-q s i=r
= = scl z = s = -
=Xm Xp_1 z r-1 .Xi _ Xs- . -Xn z Xi+eoXg
ir—l i=r-1 Ryl Xq i=r X4

=0 only if (m+n)-(1l+p)=1 and (r+s)-(1l+p)=2,
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Therefore, by selecting %' to be T or, if necessary, to be
m<r-1,s>, we have (i) and (ii), If (r+s)-(l+p)<-1, a similar
argument proves the same result.

Case 2 mgl+g, p-ggn. If p=l+g, an appropriate permutation

makes the theorem trivial.

Assume now p=2+q. Without loss of generality assume

1}
N

m Then (m+n)-(1l+p)=1 and we have (i).
We show X <X,. For if X,>X, then by lemma 1.2.k,

< - - - -
g (TT)'G ("T):—Xl. . .Xl+q+xp__q+l.. .Xpi'(l

- - (1
=X o o X - - =
m n ()—(2 in)

|

This contradiction proves that X, <X, in T.
If therefore s=n then r=2, and hence (r+s)-(1l+p)=1.
If s<n, an appropriate permutation of iE”"’ip—l will
produce T' satisfying (i) and (ii).
Assume henceforth that p>3+q. We show first that n<p.
For if n=p, then by lemma 1.2.k,

o (7)o (T)= -X;...%

L+q+xp—q+l"'§p§l
>Xpple - Xp—Xpe - Xp_2
=% E (;%(-m -ﬁ)
>0.
This contradiction proves n<p. Similarly m>1l.

We note that in 7 the following inequalities hold:

(#) Xp—q+l"'xnixm"'xl+q'

X

q<*p-q- -
Indeed, if either failed, lemma 1.2.4 and il=ip=l would

m...X Xn.
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give an immediate contradiction.

Case 2a p<l+2g From lemma 1.2.14 we have that one of the

following is true.
p-q<r<s<l+q.

r<p-q<l+g<s.

Dividi th i * X coX X X
iding e equations (*) by Xp—q+l Xl+q and Xp—q Xg
yields

)—(2+q.. <Xm --ip_q.

(%%)

Xme » .}_(p_q..li}-(l-f-q. .

We subdivide case 2a into two more cases.

Case 2ay p-q<r<s<l+q  From the first equation in (*¥*) we get

an-{2+g)+1 . AP~Q-M(A+1). Therefore,
-(2+q)+1 < p-q-m+ log, (A+1)

p-gq-m+l

I~

Consequently (n+m)<(1l+p)+1.
In a similar manner, the second eguation in (*%*) gives
us (1+p)<(n+m)+1. Therefore in m, |(m+n)-(1+p)|<l. So (i)

is true in either T or T. An appropriate permutation of

R gives (ii) immediately.

X e X
p-q’ *14q

Case 2ap, r<p-q<l+g<s. We first prove (ii). Suppose

(r+s)>(p+1)+2. Then by lemma 1.2.1, G (T<r-1l,s>)-0(m)=
S - l 1 S - -
-1; % .+q — — z Xi.-.Xi+q
Xp-1 r-l-q *s r
- - s=-1 _ - - P-Q = -
=xml..xl+g E Xl+q"’ii _ Xn_g+*+Xn z Koo o Xy
Xpo1 i=1l+4q il+q Xq i=r ip—q



s-1 -
- - |1 Riane % PRz 0%
> = . -
2 %y ge1eFn |3 1—JZL+ Titgr+ X1 i+ ¥p-g
q X14q i=r Xp_g
_ _ (1 (X,+1)5-d-1 (X, +1)p-q-r+2 1)
=X x — — -~
p-q+1l n Z
}Lm )S'Il Xm
X LW X
> ~-gq+1 - _ - - -
Z-EmAts = &x +1)°579 1 (% +1)P 9 T2,z )
X

>0.
This contradiction proves r+s<(p+l)+1l. A similar dual
argument yields (p+1)<(r+s)+l. Thus |[(r+s)-(1+p)]|<1.

Therefore (ii) holds in either T or T.

Now using (%) we get,

Xp_q+l..-Xn 5_ im...}_(l_'_q.
XKlgqr-Xg < xm...xp__q°xl+q
(3 +l)r+s—(Hp)— n-s - r-m;—
Xy Xn < Xy (xp+1)

0 if (r+s)-(1l+p)=1
Hence, (n+m)~-(r+s)

I~

1 if (r+s)-(1+p)=0

Similarly, using the second equation of (%) we get

-1 if (r+s)-(p+1)=0

(n+m)-(r+s) >
-2 if (r+s)-(p+l)=1
These results together give us |(n+m)-(p+l)|<1.
We next show that if (n+m)-(p+l)_1, then (r+s)-(p+1)=0.
For assume that (n+m)-(p+1)=-1 and (r+s)-(p+l)=1. Then

by lemma 1.2.1,

5 (m<r-1,5>)-g (m)= *m::-*1+g ) Fl+grr+®i _

36
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- - P-q - -
—XE_g..-Xn z Xi-..XE__g_
XS i=r Xp”q
— peme1, - - (x,+1)8-2"1_3
- er m l(xm+l)l+q r+l m -
X
- —g-r+1
_ ) 7 +1)P74TTL
- EpRTS (R +1)S P+ .
Xm
_ (xp+1)2ta Ty TOm-2(g y1)s-atl
—~ (%y,-1)
Xm

> 0.
This contradiction proves that if (n+m)-(p+1l)=-1, then
(r+s)-(p+1)=0.

If now (n+m)-(p+1)=-1, then T satisfies (i) and (ii).

Case 2b p»1l+2q. We first show that T can be selected so

that one of the following is true:
l+g<r<s<p-q.
r<l+g<p-q<s.

If in T 2+q<r<p-q9<s, then by lemma 1.2.1

_ .1 s-g-1 _ - 13
J(m<r-1,s>)-0(m)= %, 1 L Xje.-Xjpq T g D %y Xi+q
r-1-q r
- - s=-1 = =, - - P-q . -
ERLL Ry R SVCRLLE Q< SPEEEL U= S S
ir—l i=r-1 Xr-1 Xs i=r *p-q
-+ - - -
5.3 (% +l)S r l_l . < ( +1)P-a r+l_q
2Xn l+q - - p__q+l..c n =
z X
- m
ip—q+l"'in - s-r+l = -q-r+l
>~p=at (xp+1) -(xp+1) P78
Z X, m m
>0.
So p=o(m').

Actually, the only change in 7w<r-1l,s> is that the

seguence ir""’is has been shifted to the left one posi-



tion. A sufficient number of such shifts will result in
either l+q<r<s<p-q or r<l+g<p-q<s.

If r<l+q<s<p-q-1 a dual argument proves the same
result.

Equations (*) become

An-(p-g+1)+1 1+q-m

< A (a+1),

pa-m+l < An—(p—q)(Aﬂ).
These give us
m+ n <(p+l)+l,
(p+1)<(n+m)+1.
Hence ](n+m)—(p+l)]£l. In one of T or %, (i) is now true.

We show next that I(r+s)—(m+n)[il. For assume
(r+s)-(m+n)>2.
Then O (f<r-1,s>)c(T)=

s-g-1 S

%r—l I‘—?—q i Tieg ig T Fivg

_im ir—l Sil Xp_1-- %4 _ is__;gg ) ?1: X5

B _r—l i=r-1 ir—l Xs i=r Xg

=(aT-m-1_pn-s) § Xy Xg

i=r X

>0.
This contradiction establishes that (r+s)-(m+n)<l. A similar
argument gives (m+n)-(r+s)<l. Hence |(r+s)-(m+n)|<1.

Using the comparisons in the preceding paragraph,



we see that

if (I‘+S)—(m+n)=l, then u=o‘("r-r)=p(:ﬁ<r'-]_,s>);

if (r+s)-(m+n)=-1, then p=o (7)=0 (T<s+l,r>).

5o now if (r+s)-(m+n)=0, let T'=T,

=1

if (m+n)-(1l+p)=1

If (r+s)-(m+n)=-1, let W'=¢q_
m<s+1l,r> if (m+n)-(1+p)=0
T<r-1,s> if (m+n)-(1+p)=1

If (r+s)-(m+n)=1, let T'= (_
m if (m+n)-(1+p)=0

With the above choices for W', condition (ii) is true.

Case 2b, r<l+q<p-g<s. We first show |(r+s)-(p+1)]|<1. For

assume (r+s)-(p+1)>2. Then by lemma 1.2.1, 0 (F<r-21,8>)-(
S=l-qg

)

1]

This contradiction proves that (r+s)-(p+1)<1l. A similar
argument proves (p+l)-(r+s)<l. Hence in one of T or %,
(ii) is satisfied.

The first equation in (¥) becomes on substitution
An—s(A+l)s—p+inr—m(A+l)2+q—r. From this we get
(m+n)-(r+s)<l if (r+s)-(p+1)=0;

(m+n)-(r+s)<0 if (r+s)-(p+l)=1.
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Similarly, the second equation in (*) yields
(m+n)—(r+s)i~l if (r+s)-(p+l)=0
(m+n)—(r+s)z-3 if (r+s)-(p+l)=1.

If (r+s)-(p+1)=0, then (i) and (ii) both hold in one

an

of T or
If (r+s)-(p+1)=1, we show (m+n)-(r+s)2-1l. For assume

(m+n)-(r+s)<-2. Then o (T<r-1,s>)-0(7)=

%o, .% STl X4ge X5 % z, P2 %....%
Tw_toltg  y Zitert7i Fpegrctfm T7 it Tp-g
Xyr-1 i=1l+q X14gq Xg i=r X, q

(a+1)5-2"1_1
A

(A+1

=Ar—m—l(A+l)2+q—r

)p—q—r+l
A

1

_An—S(A+l)S-p+q~l

=An_s—l(A+l)s_p+q—l(A(A+l)((A+1)S—q—l—g _(A+l)p—q—r+l_l)
=An‘s‘l(A+1)S‘P+q‘l(A(A+1)—1)((A+1)p‘q‘r“l-1)
SAB=S-1(p41)8-Pta-1(a(p+1)-1)A
>0.

This contradiction proves that (m+n)-(r+s)>-1.
Thus if (r+s)-(p+1)=1, then (m+n)-(r+s)=0 or 1. So

(i) is true. §

We now show that our results are valid even if some of

X - »X, are one. Evidently in this case we have some

m?
freedom in the choice of m and n. Lemmas 1.1.11-13
allow us to assume X1<...<Xj44- We now select n so that

Xp22 and x5;=1 for i=n+l,...,p. Then m is chosen to be n-qg.

Because n>1+g, we have m>1. With this choice of m and n
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lemmas 1.2.17, 1.2.18, and theorem 1.2.19 remain valid.
It is then straightforward to verify that in theorem 1.2.22
a T' can be found satisfying (ii) and satisfying (i) for

some new choice of m and n.l

In theorems 1.2.2. and 1.2.22 there 1is exactly one
partition satisfying the conclusions. We give an explicit

description of this partition in terms of N,p, and q.

Theorem 1.2.22 With T as defined below, u=o (m).

Let A= N-p+tg+l .
q+l

Define m,n,r, and s by
m=Pliq+1,
2

e [mq«»l)(A-[A])] "

b

2
2
Now define x; by
x;=1 for i=1,...,m-1,n+l1,...,D
x;=[A] for i=m,...,r-1,s+1l,...,m
x;=[A]+1 for i=r,...,s.
Proof. It is routine to check that m,n,r, and s satisfy

the conditions in theorems 1.2.21 and 1.2.22, and that

§ x.=N.§
i

1=1
Using the partition in theorem 1.2.22 it 1s possible

to compute py exactly. The general formula is too ponderous



L3

to be interesting. We give instead a simpler approximation

for wu which does not involve r and s.

Theorem 1.2.23

If p>1+3q,

N-3q-1+ (413" 1+[a]9-2[a] <u<li-3g-1+#[A]+1)8% 1+ ([A]+1)9-2([A]+1) |
(A]-1 - [a]
If p<1l+3q,

[A]q+l_[A]2+q—m
[A]-1

¢ [a19%lepep(Lal+1) - ([a]+1)07PPAME p g yal,

2 [a]

In either case, if [A]=l, then an alternate lower bound for

MW is p-q<u.

Proof. The lower bounds are found when all of XpseeosXy
are [A]. The upper bounds are found when all the terms

Xpseoe X, are [A]+1.



Chapter II

Maximizing over Nonnegative Real Numbers

We turn to the second problem stated in chapter 0. The
three fixed parameters are o,p, and g, where o is a positive

real number and 1<q<p-1. The variables x; are now non-

1

negative real numbers. It Ep denotes euclidean p-space,

then I is given by

H={w=(xl,...,xp)EEP|xizo for i=1,...,p; § xs=al.
i=1

Let R, denote the set of nonnegative real numbers. Then
the mapping U:H-—>R>O and the number |y are defined analogously
- b-q

to the first problem, i.e. o(m)= 2 Xj.+-Xj4q and u=max s ().
i=1 mell

In theorem £.1 we prove that u:}(%) for some Tell. The
results of this chapter are stated in theorem 2.5

Theorem 2.1 The number iy exists and there exists a par-

tition Wel such that u=o (7).
Proof. We show that [ is a compact subset of EP and that
g :m—>R,y is continuous.

Let d denote the standard metric for Ep, and let

0=(0,...,0) denote the zero element in EP. For mell,

0<x;<a for i=1,...,p. Therefore

43
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So for m,m'ell,
d(n,n')5d(@n)+d(e,n')<2pa.
Hence the set II is bounded.

s 0o
Let (ﬂJ)j=l be a Cauchy sequence of elements in I

with limit 7 in EP, ye show mell. Convergence in X is
equivalent to convergence in every coordinate. For i fixed,
x;= lim xJ

j—)oo i

>0, because xgzo for all j§.

That is, in = xiiO for i=1,...,p.

)
Now because (ﬂJ)j=l is Cauchy in each coordinate, for a

fixed €>0 and for a fixed i, there exists an

N(e,i) such that for all j>N(e,i), lxi_xil<€.
D
Let N(e)= max N(e,i). Then for a fixed €>0, there exists an
i=1

N(e) such that for all j>N(€) and for all i,|x‘;—xi <g.

Now let €>0 be arbitrary but fixed. Select N so large

that for all j>N and for all i,‘xi—xi|<%. Then for all J>N,

o~

b P
izlxi—a ) Z T *

Hence E X, =0, Combined with the result that xiZO for

i=l,...,p, this proves that mwell.
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Thus II contains all its limit points. So I is a cloéed
subset of EP. It was shown earlier that I is bounded. Con-
sequently II is compact in EP,

The mapping 0 :I-»R,(y consists of sums of products of
projections, which are continuous. ©So ¢ is continuous.

So, using a well-known theorem from topology, it must
be true that ¢ attains a maximum Y for some T |

Lemma 2.2 Let the distinct integers h and k in the range

l<h,k<p be such that |h-k|>q. Let n=(xl;...,xp)gH be such
that xk=e>0. Then
h k
o (m<h,k>)o (m)= *k ) Xi+eoXi4q "~ ) XjeeeXipq-
Xy i=h-q i=k-q

Proof. We omit the proof, for it involves the same technique

as lemmsa l.2.l.|

Theorem 2.3 There exists a partition 7° such that i§=0

for i=2+q,...,D.

Proof. We first prove the following: 1if 1<h<k-q-1, k<p,
then there exists a partition T such that X;=0 for
i=1,2,...,h-1,k+1,...,p, and where x;,=0 or x,=0. The proof
is by induction on k-h from p-1 to g+l.
To start the induction, let k-h=p-1. Then k=p and h=1l.
The condition x;=0 for i=1,2,...,5-1,k+1,...,p 1is true by
convention. Assume without loss of generality that ;h’;k>o'
Define m' and 7" by
T'=T<1,p> where €=xp, and

T'=7<p,l> where E€=Xj.
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Then by lemma 2.2,

_ _ 1
' _ X byl = - - =
oo ()= T § R R, ) R Fieg
x] 1-q p-q
- (2 % - - 1 % _ _
= = X P& - X.eeeX
P {%q 1°g 1 it x4 pq i i+g
1 _l %
" - = - - + =4 - -
0(” )ﬂT(ﬂ) Z xl itq X xl i+q
1-q p pP-q
1 P
1 - -
=% |- = ¥ = = 1
Xl Xl L Xl .Xi+q+ .)__(_ 2 X3 'Xi+q '
1-gq p P-a

It follows that O(ﬂ')—O(%)zO or g(m")~s(m)>0

If 5(n' ) (7)>0, +then = (F)=0(n') and x,=0.

If o(n")=(7w)>0, then u=o(1_r)=o(ﬂ") and x;=0.
In either case the desired partition has been produced,
proving the statement for k-h=p-1.

Now let h and k be such that 1<h, k<p, and g+l<k-h<p-2.

Without loss of generality assume Xy ,x;>0.

Case 1 h>2.

Applying the inductive hypothesis to h-1 and k yields a
partition T such that x;=0 for i=1,2,...,h-2,k+1l,...,p, and

X =0.
such that x, 1
Define 7' and 7" by

m'= 7w<h,k> for €=§k, and

"= T<k,h> for €=Xx -

As above, o (m")=0(T)>0 or s (7")c(m)>0. If o(n")-o(m)>0,

then o (n")= (T)=M and %.=0. Ifo(n')-o(m)20,

then 0 (T')=0 (T)=U and ih=0. In either case the desired

partition has been produced. Because (k-h)<(k-(h-1)), the
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statement is proved by induction.

Case 2 h=1 1In this case the inductive hypothesis must be

applied to h and k+1l. A similar argument works thereafter.

In particular, for h=k-q~1, there is a partition T
such that %;=0 for i=1,...,h-1,k+1,...,p, and X;=0 or X, =0.
Or, with appropriate relabling, there is a partition T such
that ;i=0 for i=1,...,m-1,n+l,...,p, where m and n are such
that 1<m,n<p,n-m=q.

o

Finally, define T° by i§=im+i—l for i=1,2,...,1l+q and

X;=0 for i=2+q,...,p. Then
~0)= =o =0
g(me) ESRERES PN
= % ...%,
=o(m)
= u. B
Henceforth 7 denotes the partition of theorem 2.3.
Theorem 2.4 In T, X1Te . FX14q-
o o3
Proof. Let m= (q+l,...,g:z,0,...,0). Then >y (m)>0.
q:l
Hence in T it must be true that X;>0 for i=1l,...,l+g.
Let m be such that x;=0 for 1=2+q,...,Dp, xi>0 for

i=1,...,1+q, but that x,#x, for some h and k in the range
1<j,k<l+q. We show u#s(m).
Assume without loss of generality that Xy > Xy - Select

X, -X
€ to be e= —£§_£.
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Then o (T<k,h>) = yl...yl+q

(xyn-€) (x3+€)
*h¥k

Xl' . .Xl+q

2
EXR-EXE-E
Xl"‘xl+q +

Xlo . -Xl+q
Ep Xy ,
=g(m) + €2« X1 X144
Xh Xk
>o(m).
Thus u# (T), and the theorem is established. |}
_ N ' - a1+
Th = R = =(——)+t7e
eorem 2.5 For mw (l+q’ ,l+q:0,...,0), u=s (1) (l+q)
1%gq
Proof.

The proof is immediate from theorem 2.4, l



